## Laredo River Road

## Corridor Study

Prepared for City of Laredo

Prepared by

## Laredo River Road Corridor Study

## Laredo River Road Corridor Study

Table of Contents
Executive Summary ..... 1
Introduction ..... 2
Data Collection and Description of Existing Conditions ..... 4
Data Collection. ..... 4
24-hour Vehicle Traffic Counts ..... 4
Video GPS Roadway Inventory ..... 5
Existing Signal Timing and Phasing Plans ..... 5
Accident Data ..... 5
Travel Demand Model ..... 12
Available Data ..... 12
Land Use ..... 12
Right-of-Way Data. ..... 12
USGS Digital Elevation Model ..... 12
Evaluation of Existing Conditions ..... 14
Design Criteria ..... 15
Laredo River Road Alignment ..... 17
Logical Project Segmentation ..... 17
NEPA Requirements ..... 19
Evaluation of Future Conditions ..... 20
Project Cost ..... 23
Benefit/Cost Analysis ..... 24
Findings and Recommendations. ..... 25
Appendix A. 24-hour Count Data ..... A
Appendix B. City of Laredo Signal Timing ..... B
Appendix C. Travel Demand Model Guide. ..... C
Appendix D. Level of Service Analysis Sheets ..... D
Appendix E. Detailed Alignments and Costs ..... E
List of Figures
Figure 1. Overall Laredo River Road Alignment ..... 3
Figure 2. Data Collection Locations ..... 6
Figure 3. Mines Road \& Old Santa Maria Road ..... 7
Figure 4. US Hwy 83 \& South Meadow Avenue ..... 8
Figure 5. Accident Counts on Zapata Highway ..... 10
Figure 6. Accident Counts on Mines Road. ..... 11
Figure 7. Laredo Land Use ..... 13
Figure 8. Typical River Road Sections ..... 16
Figure 9. Physical Constraints ..... 18
Figure 10. 2030 Flow Band Map Without River Road ..... 21
Figure 11. 2030 Flow Band Map With River Road ..... 22
List of Tables
Table 1: City of Laredo/ Laredo MPO - Roadway Classifications - River Road ..... 15
Table 2. Network Statistics ..... 20
Table 3. Cost Analysis of Laredo River Road Segments ..... 23
Table 4. Benefit/Cost Analysis of Laredo River Road Segments ..... 24

## Laredo River Road Corridor Study

## Executive Summary

In response to a Laredo Urban Transportation Study (LUTS) request, Alliance Transportation Group, Inc. has been retained to conduct a feasibility study concerning the construction of a road (River Road) that would run parallel to the Rio Grande River in Laredo, TX. This proposed roadway corridor would connect the existing portion of River Road to Mines Road to the north and US 83 to the south. Figure 1 shows an overview of the study area as well as the proposed River Road Corridor as examined in this study.

The proposed River Road Corridor has the potential to provide Laredo with an additional north-south access from northwest Laredo to southern Laredo. The current routes providing primary north-south connectivity are IH 35, FM 1472, and US 83. These roadways are currently experiencing congestion.

The primary objective of the study is to assess the feasibility of constructing River Road to expedite the flow of cars and trucks within and through Laredo. This required evaluation of the existing conditions and traffic characteristics of Laredo, as well as the future conditions based on the city's current development plans and socioeconomic forecasts.

Alliance developed travel projections, performed operational analyses, and evaluated design constraints to determine the feasibility of River Road to meet the needs of people, businesses, and community organizations in the area. In evaluating the roadway, this study considers future roadway congestion, mobility, access, topography and economic development impacts.

Constraints of the project included in the analysis were cost and constructability. Constructability includes the evaluation of cross-slopes, flood plain, existing developments (business relocation, public utilities, residential displacements), and connectivity to the existing transportation system.

Several sections of the proposed Laredo River Road project alignment are situated in the floodplain of the Rio Grande River. In order to comply with Federal and State requirements, development of a new roadway in a floodplain would require a determination that the placement of the roadway in the floodplain was necessary and that no alternate alignment or solution would work. Review of the National Environmental Policy Act (NEPA) indicates that the NEPA process would apply to this project even if no federal dollars were used in the construction of a roadway.

Based on the analysis conducted, Alliance Transportation Group, Inc. submits the following conclusions regarding the Proposed Laredo River Road:

1. A preliminary assessment of the horizontal alignment indicates that roadway can be designed and built.
2. River Road has the most potential benefit around the City Center.
3. Section 4 that runs from the existing River Road to Southgate Boulevard provides the most benefits.
4. Several section of the proposed corridor do not warrant construction based on a benefit/cost analysis.
5. The proposed River Road is expected to trigger a NEPA process.

Based on these results it is recommended that Section 4 be analyzed further for determination of constructability to help alleviate further congestion at the intersection of Meadow Avenue and US 83. Sections 2 and 3 should be re-evaluated when a final alignment has been determined for River Road to gage the effects that the physical constraints have on these sections.

## Introduction

Alliance Transportation Group, Inc., has conducted a feasibility study of the proposed River Road Corridor. The River Road corridor runs parallel to the existing alignments of Mines Road and Zapata Hwy/US 83 along the Rio Grande River. This proposed roadway would connect existing River Road downtown to Mines Road to the north and US 83 to the south. The proposed alignment would also tie into existing roadways where feasible. Figure 1 shows an overview of the study area as well as the proposed alignment of River Road examined in this study.

The purpose of this report is to present the feasibility of Laredo River Road. Alliance developed travel projections, performed operational analyses, and evaluated design constraints determining the feasibility of River Road to meet the needs of people, businesses, and community organizations in the area. In evaluating the roadway, this study considers future roadway congestion, mobility, access, topography and economic development impacts.

The following summarizes the elements performed during the Laredo River Road study. These elements include:

- Data collection and description of existing conditions;
- Evaluation of existing conditions;
- Design criteria;
- Laredo River Road Alignment;
- Logical Project Segmentation;
- NEPA Requirements;
- Evaluation of future conditions;
- Project Cost;
- Benefit/Cost Analysis; and
- Findings and Recommendations.

Individually the sections describe the study methodology applied for that portion of the analysis and provide an overview of the work performed. Collectively they provide an overview of how the individual steps in the analysis contributed to development of the findings and recommendations of the Laredo River Road Feasibility Study.


Figure 1. OVERALL LAREDO RIVER ROAD ALIGNMENT

## Data Collection and Description of Existing Conditions

This section describes the existing conditions observed along the River Road corridor. Existing conditions are described in terms of geometric and operational conditions of existing roadways in the study area, existing land uses in and adjacent to the proposed roadway corridor, and traffic counts on major study area roadways.

The Laredo River Road study area contains several major roadways that have the potential to compete with, complement, or interact with the proposed River Road project. These roadways include:

Mines Road - Mines Road is a six-lane roadway in the City of Laredo and is a four-lane divided facility north of the city. The potential for development along Mines Road is high due to the large amount of open land available for development. Mines road currently connects to $\mathrm{IH}-35$ at a signalized intersection along the $\mathrm{IH}-35$ frontage road on the west side of IH-35.

The World Trade Bridge - The World Trade Bridge is located on Loop 20 (Bob Bullock Loop) and connects to Mines Road and IH-35.

The Camino Columbia Bridge - The Camino Columbia Bridge currently serves commercial truck traffic only. The bridge connects to the Camino Columbia Toll Road and Mines Road (FM 1472) and eventually IH-35 via the Camino Columbia Toll Road

Zapata Highway/US 83 - Zapata Highway/US 83 is a four-lane highway intersected by numerous residential streets and is located in southern Laredo.

Bridges 1 and 2-Bridges 1 and 2 take access off of IH-35 and Convent Avenue. These two bridges are closed to commercial truck access.

Alliance conducted data collection to evaluate the operations of the existing facilities. In addition, existing data resources and analytical tools were assembled from available sources. The following data and analytical resources were collected:

- 24-hour counts (4 locations);
- Video GPS Roadway Inventory;
- Existing Signal timings; Appendix B
- Accident Data; Figures 5 and 6
- Most Current Travel Demand Model Components;
- Land Use; Figure 7
- ROW widths; and
- USGS Digital Elevation Model.


## Data Collection

## 24-hour Vehicle Traffic Counts

After analysis of the current transportation system, two corridors were chosen that would best describe the traffic flows among the major traffic generators in the region. These corridors were Mines Road from IH-35 to Bridge \#3 (Columbia Solidarity) and US 83 from South Meadow Avenue to 2 miles south of Mangana Hein Road.

For this study, it was determined that the most effective measure of traffic would be 24 -hour directional counts. These 24-counts can be used to describe a typical traffic flow within a full day, as well as peak hour volumes.

24 -hour traffic counts were collected in 2005 at selected locations within the corridor study area. The 24 -hour traffic counts were taken at the following locations (as show in Figure 2):

- Mines Road south of Camino Columbia Road;
- Mines Road between El Pico Road and Las Tiendas Road;
- Mines Road north of Loop 20; and
- US Hwy 83 north of La Pita Mangana Road.

These counts are provided in Appendix A.

## Video GPS Roadway Inventory

Geometric data was collected on roadways parallel to the proposed River Road. Video GPS allows data to be recorded to a video file that is linked with the vehicle's location as determined using GPS. The resulting video provides a visual reference that can be reviewed to observe current roadway geometry, and provides a "hands on" understanding of the physical features of the roadway, current operational characteristics, and the exact location, function and form of land uses in the study area. Each intersection of the study area was observed to determine the number of lanes on each roadway and to document the lane assignments.

There were two intersections determined to be significant to the analysis of this particular corridor: the signalized intersection of Mines Road and Old Santa Maria Road shown in Figure 3; and the un-signalized intersection of US 83 and South Meadow Avenue shown in Figure 4.

## Existing Signal Timing and Phasing Plans

Signal timing and phasing plans are needed to evaluate the existing operation at the signalized intersections. These plans were provided by the City of Laredo and are located in Appendix B. These plans were used to evaluate the Levels of Service at the existing intersections.

## Accident Data

The ability of a proposed project to improve transportation safety in a community is always a significant factor to consider in any feasibility analysis. A fundamental data element used to evaluate the safety of a community's transportation system is vehicle accident data. Historical data on the location, frequency, and type of vehiclevehicle and vehicle-pedestrian accidents provides immediate insight into the transportation system's ability to meet the goal of moving people and goods safely. In this study, available vehicle accident data was used to assess the problems currently experienced by the general public and determine whether these accidents were a result of driver error or if there are planning measures than can be taken to prevent such incidents.




## Laredo River Road Corridor Study

The City of Laredo Police Department (CLPD) provided vehicle accident data on the number and type of accidents, as well as what type of vehicles were involved, for the full length of the main north/south corridor through the city. Figure 5 shows accident counts for Zapata Highway, and Figure 6 shows the accident data for Mines Road.

The next section labeled Evaluation of Existing Conditions (page 15) identifies the construction projects that are currently underway to mitigate the problem areas identified by this accident data.

```
MEXICO
```



FIGURE 5. 2001 ACCIDENT COUNTS ON ZAPATA HWY


## Laredo River Road Corridor Study

## Travel Demand Model

Travel demand models are used to forecast future traffic volumes likely to be produced by anticipated future land use patterns. The travel demand model is used to determine how many trips may be generated, how these trips are likely to be distributed among the various activity centers, and on what roadways the trips are most likely to travel.

During project initiation, Alliance evaluated the available travel demand models that depicted travel in the Laredo Area. In order to capture all the analysis parameters necessary to evaluate the feasibility of the proposed River Road, a combination of the City of Laredo 2030 Plan Model and the TxDOT Laredo Model were applied during the analysis. Roadways in the model network were updated to reflect roadways that were not included in the 2030 model, such as the Loop 20 / Mines Road interchange as well the freeway portion of Loop 20. Proposed roadways identified by the City of Laredo were also added, such as the River Road and an alternate loop around the city.

The 2005 trip table was created from the 2000 model run supplied by the Laredo MPO. The 2005 external trips were removed from the trip table, and the 2025 external trip table supplied by Laredo was preloaded to the 2025 network. The 2005 trip table for internal nodes was applied to the 2025 network, and the 2005 model-generated traffic numbers were factored up to 2030. The external trips were then added to the factored traffic numbers to get total link volumes. A more detailed explanation of the travel demand model can be found in Appendix C.

## Available Data

## Land Use

Land use plays an important part in the future development of a region. Current land uses were obtained from the City of Laredo and are shown in Figure 7. These existing land uses were used to help evaluate the 2005 Travel Demand model for accuracy.

## Right-of-Way Data

Right-of-Way data was provided by the City of Laredo in a GIS streets layer. This ROW data was used to determine if it would be feasible for the current roadway cross-sections to be widened if it is determined that portions of the River Road could not be built.

## USGS Digital Elevation Model

Elevation Data was provided in the form of a DEM file to determine the amounts of cut or fill required for River Road within the corridor. This data will be important in determining the associated cost of the roadway, and selecting a reasonable alignment for the proposed River Road.

The new data collected, available data assembled, and the analytical resources developed during this phase of the project were used to document and evaluate existing conditions, develop design criteria for evaluating the feasibility of the corridor, identify an alignment suitable for evaluating River Road, and evaluate future conditions. The first step in this process once the data was collected and the current conditions were documented was to evaluate current conditions in the study area in terms of measures of effectiveness that could be used as a baseline for comparison with proposed future conditions.


## Evaluation of Existing Conditions

Using the data collected during the initial phase of this project, several activities were undertaken to evaluate existing conditions. These efforts included: (1) review of aerial photography, and USGS digital elevation model data; and (2) review of the VideoGPS.

The River Road corridor was evaluated using available aerial Digital Ortho Quarter Quads (DOQQ's). The DOQQs were provided by the City of Laredo and combined with the U.S. Geological Survey (USGS) Digital Elevation Model (DEM) data. This information was reviewed and the following physical constraints were identified in the River Road corridor:

- Flood Plain;
- Water Treatment Plant Locations (2);
- Rail Yard; and
- Streams/creeks feeding into the Rio Grande River.

Video GPS roadway inventory was conducted for the roadways that parallel the proposed River Road corridor, and roadways that would potentially connect to River Road. In addition traffic counts were collected along Mines Road and US 83 as denoted in the previous section. The culmination of these efforts was reviewed to observe current geometric data, and provides a "hands on" understanding of the physical characteristics and exact land uses of the area.

The following locations were observed to be bottlenecks within the existing Mines Road and Hwy 83 corridors:

- IH-35 and Mines Road at the UP Railroad grade crossing
- US 83/Zapata Hwy and Meadow Avenue

It should be noted that the observed bottleneck at IH 35 and Mines Road is currently being mitigated by the construction of two projects. These projects include the Direct Connector \#7 (Northbound IH-35 to westbound Loop 20) that is scheduled for completion in Spring 2006. The other project is the construction of the railroad grade separation at FM 1472 and IH-35. The railroad grade separation project began in March 2006 and will be completed in November 2008.

These intersections have been observed to have deficiencies through both visual observations as well as intersection Level of Service analysis. Level of Service analysis sheets can be found in Appendix D. Accident data collected in 2001 also indicated a high concentration of crashes around and to the south of the US 83 and Meadow Avenue intersection.

The evaluation of existing conditions provided the information needed to develop design criteria and identify existing physical constraints for the alignment. The next section details the design criteria developed to properly evaluate River Road.

## Laredo River Road Corridor Study

## Design Criteria

To properly evaluate River Road a set of design criteria were developed. This set of criteria was used to evaluate whether the River Road can be built in the proposed corridor. A preliminary model run was conducted to determine the volumes of traffic expected on the roadway. Based on these volumes a preliminary set of crosssections was developed.

The proposed typical sections for the River Road project are shown in Figure 8. These sections include:

- Minor Collector - Two-lane;
- Minor Collector - Three-lane;
- Minor Arterial - Four-lane, divided; and
- Minor Arterial - Five-lane.

Table $\mathbf{1}$ is a listing of the characteristics for each proposed section. Expected Right-of-Way (ROW) for these sections range from 60 feet to 90 feet.

Table 1: City of Laredo/ Laredo MPO - Roadway Classifications - River Road

| Characteristic | Roadway Classification |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Minor Collector |  | Minor Arterial (Undivided) |  | Minor Arterial (Divided) |  |
|  | Minimum | Maximum | Minimum | Maximum | Minimum | Maximum |
| $\begin{aligned} & \text { Average Daily Traffic (ADT) } \\ & \text { volume } \end{aligned}$ | 1,500 vpd | 5,000 vpd | 18,000 vpd | 21,000 vpd | 21,000 vpd | 23,000 vpd |
| Number of Traffic Lanes | 2 | 3 | 5 | 5 | 4 | 4 |
| Min. Lane Width | 10 ft . | 12 ft . | 11 ft . | 12 ft . | 11 ft . | 12 ft . |
| Median Width | -na- | -na- | $11 \mathrm{ft} .^{1}$ | $14 \mathrm{ft} .^{1}$ | 16 ft . | 26 ft . |
| Pavement Width | 30 ft . | 36 ft . | 55 ft . | 60 ft . | $\begin{gathered} 44 \mathrm{ft} .(2 \text { sides } \mathrm{x} \\ 22 \mathrm{ft} .) \\ \hline \end{gathered}$ | $\begin{gathered} 48 \mathrm{ft} .(2 \text { sides } \mathrm{x} \\ 24 \mathrm{ft} .) \end{gathered}$ |
| Total Right-of-way width ${ }^{2}$ | 60 ft . | 60 ft . | 80 ft . | 80 ft . | 90 ft . | 90 ft . |
| Parkway width | 12 ft . | 12 ft . | 10 ft . | 12 ft . | 10 ft . | 13 ft . |
| Sidewalk width | $4-5 \mathrm{ft}$. | $4-5 \mathrm{ft}$. | 5 ft . | 6 ft . | 5 ft . | 6 ft . |
| On-street parking allowed? | Yes ${ }^{3}$ | Yes | No | No | No | No |
| Design Speed | 30 mph | 35 mph | 35 mph | 35 mph | 40 mph | 45 mph |
| Pavement cross slope | 1.5\% | 2\% | 1.5\% | 2\% | 1.5\% | 2.0\% |
| Min. Centerline Radius w/ no superelevation | 350 ft . | 500 ft . | 500 ft . | 500 ft . | 750 ft . | $1,000 \mathrm{ft}$. |
| Min. K-Value (Crest) | 19 | 29 | 29 | 29 | 44 | 61 |
| Min. K-Value (Sag) | 37 | 49 | 49 | 49 | 64 | 79 |
| Grade (\%) | --- | 7\% | --- | 5\% | --- | 5\% |
| Lateral Clearance (desirable) | 6 ft . | -na- | 6 ft . | -na- | 6 ft . | -na- |
| Vertical Clearance (desirable) | 14 ft . | 17 ft . | 14 ft . | 17 ft . | 14 ft . | 17 ft . |

[^0]

November 3, 2005
Figure 8.
PROPOSED RIVER ROAD TYPICAL SECTIONS

The evaluation of the alignment of River Road required a cross-section to be chosen for cost estimation purposes. The width of right-of-way needed for each section determines whether or not a proposed cross-section would fit in the given corridor. It was determined that a minor collector cross-section would be used based on limited potential for development to the west of the corridor and to minimize the encroachment into the flood plain. The next section details the preliminary alignment for River Road that was used in the feasibility analysis.

## Laredo River Road Alignment

Using the data collected and criteria developed previously, a preliminary alignment was selected to evaluate the physical constraints and opportunities of the River Road project. The proposed cross-section was a minor collector which requires a pavement width of 36 feet, and a right-of-way width of 60 feet.

Aerial photography, DEM data, and flood plain data were used to develop this preliminary alignment. The existing physical constraints of the area, including flood plains (obtained from the Federal Emergency Management Agency's Q3 Flood Data), are shown in Figure 9. Figure 1 shows this preliminary alignment and its surrounding roadway network.

A preliminary assessment of the horizontal and vertical alignment of the proposed River Road has been completed by the sub-consultant. This assessment indicates that there are no known problems with the proposed horizontal alignment of River Road. Using this alignment, the next section details the logical segmentation needed for future evaluation.

## Logical Project Segmentation

The previous section looked at overall horizontal and vertical alignment for River Road. This section delineates the logical segmentation selected for the evaluation of building separate sections of River Road.

Logical section breaks were determined based on existing roadway locations as termination points. This yielded a total of six (6) sections of roadway to be evaluated. The northern section of the alignment labeled Section 0 on Figure 1 has been evaluated and determined not to be viable due to the lack of traffic volume on the segment and its close proximity to Mines Road as an existing parallel highway route with excess capacity. As part of this assessment, further evaluation was performed on the following five sections of River Road:

1. From Mines Road to approximately the Bob Bullock Loop;

2 From approximately the Bob Bullock Loop to Anna Road/Marco Drive;
3. From Anna Road/Marco Drive to the existing portion of River Road;
4. From existing portion of River Road to Southgate Boulevard; and
5. From Southgate Boulevard to 2 miles south of Mangana Hein Road.

Figure 1 shows each of the six sections, or more detailed alignments of these viable five sections can be found in Appendix E.


## Laredo River Road Corridor Study

## NEPA Requirements

To determine the state and federal requirements that would apply to construction of the Laredo River Road Project, Alliance conducted interviews with state and federal officials and reviewed the FHWA guidance for roadway construction projects. The following information is provided based on the interviews and review.

Several sections of the proposed Laredo River Road project alignment are situated in the floodplain of the Rio Grande River. According to FHWA Planning and Program Development Director Michael Leary and former TxDOT Engineer Max Proctor, development of a new roadway in a floodplain would require a determination that the placement of the roadway in the floodplain was necessary and that no alternate alignment or solution is feasible.

This requirement is problematic for the Laredo River Road project. The analysis conducted in this feasibility study, indicates that there may be effective alternatives that meet the identified need and accomplish the stated purpose of the proposed roadway without construction in the floodplain.

The operative process for making the described determination of necessity would be an environmental impact study (EIS) carried out under the provisions of the National Environmental Policy Act (NEPA). In order to obtain a record of decision (ROD) in favor of the project it would need to meet the requirements for building in the floodplain as well as meet requirements posed by any other federal interests that may be impacted by the project.

Review of the National Environmental Policy Act (NEPA) indicates that the NEPA process applies if there is a federal interest involved in the project. Even if no federal dollars are used in the construction of a roadway, any impacts to floodplains, wetlands, endangered species, historic and archeological sites, parklands, air quality, wildlife habitat, etc. will require the preparation of an environmental impact statement.

Based on the review of the proposed alignment in this study, at a minimum, the following areas of federal interest are present with regard to the Laredo River Road project. Any or all of which would be expected to trigger the NEPA process and require, at a minimum, an environmental assessment and likely an environmental impact study.
o Impacts to the floodplain;
o Impacts to a navigable waterway;
o Impacts on Federal facilities (US Highways and Border Crossings);
o Air quality impacts; and
o Impacts to wildlife habitat .
The above list is not intended to be comprehensive. There may be other considerations that would need to be addressed in the NEPA process. However, the above list does present several challenges to forward momentum on the River Road project.

## Evaluation of Future Conditions

During the Laredo River Road Feasibility Study, a travel modeling process was used to help identify areas of congestion and aid in developing of the operational analysis. An extensive effort was made to develop a complete process that resulted in a Laredo River Road Feasibility Study model. The procedures established for this project were developed to conform to state-of-the-practice modeling procedures used and/or developed in the State of Texas. The overall objective of these efforts was to develop time-of-day traffic projections that can be input into traffic simulation models (Synchro) for further analysis. For this analysis, the travel demand forecast from the refined TxDOT Laredo model was used.

Travel demand models are used to predict traffic volumes on proposed roadways for the development of transportation plans. The traffic forecast is based on forecasted demographics, i.e., population and employment. Since it is a computerized model, a roadway can be tested for its traffic forecast even if it does not yet exist. Based on the origins and destinations of expected population and employment concentrations, the computer simulation forecasts the traffic a roadway would be expected to carry if it were built or improved. The traffic model can also be used to predict the impact of widening roadways (increasing their expected speed) as well as the impact of specific residential developments or shopping and employment centers.

The Laredo River Road Feasibility Study model was developed using TransCAD, which serves as the software for prediction of forecasted traffic for the River Road Corridor Study. The Laredo River Road Feasibility Study model is a refinement of the TxDOT Laredo planning model. The refinements of the planning model were intended to better reflect detailed changes. The resulting forecasted traffic demand, including turning movements, were input into the operational simulation model Synchro. The network used in the analysis is based on the current Laredo 2030 plan, with a few revisions to reflect changes in planned roadways or corrected alignments. All of the through trip assumptions for the region are the same as for the TxDOT Laredo model, and all of the external volumes match the TxDOT Laredo model.

Table 2 shows the associated network statistics for 2005 and 2030 with and without River Road in place. Figures 10 and 11 are flow band maps that graphically illustrate this difference.

Table 2. Network Statistics

| Model Run | Vehicle Miles Traveled | Vehicle Hours Traveled |
| :---: | :---: | :---: |
| 2005 24-hour | $2,643,534$ | 109,387 |
| 2030 w/o River Road 24-hour | $4,699,820$ | 465,759 |
| 2030 w/ River Road 24-hour | $4,705,371$ | 445,598 |

## 203024 Hour Traffic Flow Bands Without River Road

## 203024 Hour Traffic Flow Bands With River Road

## - T T River Road

## Laredo River Road Corridor Study

## Project Cost

Using the developed criteria, a preliminary alignment was set and logical segmentation was developed in order to evaluate River Road. Using this information, a cost estimate for each section was developed. The following table shows an estimation of the proposed cost of each section. The costs are an estimation of pavement cost based on a 36 -foot wide cross-section and 44 -foot wide bridge structure as well as an estimation of maintenance costs over a $25-$ year period. However, these estimates do not include any other planning, engineering, or design costs. The maps detailing the alignments of these sections as well as the associated costs can be found in Appendix E. The next section used this estimation of cost to determine a benefit/cost analysis for each section of River Road.

Table 3. Cost Analysis of Laredo River Road Segments

| Section | Limits | Length of <br> Roadway <br> (miles) | Estimated <br> Roadway <br> Cost | Estimated <br> Maintenance Cost <br> $(2005-2030)^{*}$ | Total Cost | Cost/Mile |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Mines Road to <br> Bob Bullock Loop | 5.27 | $\$ 30,026,376$ | $\$ 4,148,667$ | $\$ 34,175,043$ | $\$ 6,484,828$ |
| 2 | Bob Bullock Loop <br> to Anna Avenue | 4.43 | $\$ 18,976,268$ | $\$ 3,434,889$ | $\$ 22,411,157$ | $\$ 5,058,952$ |
| 3 | Anna Avenue to <br> Exiting River <br> Road | 3.58 | $\$ 12,242,615$ | $\$ 2,731,556$ | $\$ 12,242,615$ | $\$ 4,182,729$ |
| 4 | Existing River <br> Road to Southgate <br> Boulevard | 4.10 | $\$ 26,515,682$ | $\$ 2,515,000$ | $\$ 26,515,682$ | $\$ 7,080,654$ |
| 5 | Southgate <br> Boulevard to 2 <br> miles south of <br> Mangana Hein <br> Road | 5.45 | $\$ 40,775,945$ | $\$ 4,368,111$ | $\$ 40,775,645$ | $\$ 8,283,258$ |

Note: This information is intended to be used for planning level purposes only. It does not include other probable costs, such as: right-of-way, permits, fees, landscaping, sidewalks, pavement markings, signs, signalization, lighting, traffic control, among other items which may be required. Due to extended portions of this alignment being within the flood plain, it is anticipated that wetland/environmental issues will be a significant part of the overall design and approval process and are not reflected in the above costs.
*This estimated cost assumes a $4 \%$ maintenance cost for pavement maintenance and $\$ 0.50$ per square yard for bridge maintenance annually.

## Laredo River Road Corridor Study

## Benefit/Cost Analysis

Using the estimated costs for a 36 -foot cross section from the previous section, a benefit/cost ratio was calculated for each section of the proposed roadway segments. The benefit shown in Table 4 is based on vehicle-hours of travel saved over a 25 -year period. This value was determined using a base year and future year model. The benefit is the difference between using the new River Road over an existing parallel route. Benefit is estimated at $\$ 13.50$ per vehicle-hour based on the Web County median household income from the 2000 Census.

Table 4. Benefit/Cost Analysis of Laredo River Road Segments

| Section | Limits | 2005 <br> Average <br> Daily <br> Trips | 2030 <br> Average <br> Daily <br> Trips | 2005 <br> veh-hrs <br> of travel <br> saved* | 2030 <br> veh-hrs <br> of travel <br> saved* | Benefit @ <br> $\$ 13.5 /$ veh-hrs <br> $(2005-2030)^{* *}$ | Benefit/Cost |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Mines Road to Bob <br> Bullock Loop | 1,319 | 4,646 | 5,500 | 34,750 | $\$ 7,057,204$ | 0.21 |
| 2 | Bob Bullock Loop <br> to Anna Avenue | 5,217 | 20,072 | 73,000 | 513,500 | $\$ 102,964,110$ | 4.59 |
| 3 | Anna Avenue to <br> Exiting River Road | 8,624 | 16,904 | 49,250 | 348,750 | $\$ 69,850,982$ | 4.66 |
| 4 | Existing River Road <br> to Southgate <br> Boulevard | 5,085 | 26,900 | 203.250 | $1,062,750$ | $\$ 222,206,475$ | 7.65 |
| 5 | Southgate <br> Boulevard to 2 <br> miles south of <br> Mangana Hein Road | 2,280 | 9,429 | $-53,500$ | $-101,250$ | $-\$ 27,149,693$ | -0.60 |

Note: This information is derived from the 2005 and 2030 Laredo Travel Demand Models and is a comparative difference between travel time on River Road and travel time on an existing parallel route.

* An annualization factor of 250 was used based on 52 weeks a year, minus 2 weeks vacation/holidays, times a 5-day work-week.
**Based on average median household income for Webb County from 2000 Census $(\$ 28,100)$ divided by the average work hours per year $(2080)$.
The benefit/cost ratios were developed using the estimated cost of roadway, bridge, and roadway maintenance as the denominator, and the benefit derived from vehicle-hours saved using River Road over an alternate route as the numerator. The benefit/cost ratio can be used to evaluate which section of the roadway is feasible based on the cost and benefit estimates. A ratio of less than one ( $<1$ ) means that the cost is greater than the benefit and may not be feasible to build, whereas a ratio of greater than one $(>1)$ means that the benefits are greater the associated costs and this roadway segment has the potential to be built.

Sections 2, 3, and 4 have the potential to be built based on their benefit/cost ratio. The next section lists the finding of the feasibility analysis and provides some background on the elements that may be contributing to the benefit-cost ratios obtained.

## Findings and Recommendations

This section summarizes the overall feasibility evaluation of the proposed River Road project. Based on the analysis, the construction of River Road does have the potential to improve local traffic flow in the forecast year. However, it does not alleviate existing traffic bottlenecks at two key intersections on parallel facilities.

A 36-foot pavement width has been selected due to the limited potential for development on the west side of the corridor. The roadway classification associated with this pavement width is a minor collector. This width was chosen because of the limited corridor width and to minimize encroachment onto the flood plain.

A preliminary assessment of the horizontal and vertical alignment of the proposed River Road has been completed by the sub-consultant. This assessment indicates that there are no known problems with the proposed horizontal alignment of River Road.

Through the creation of logical segments based on existing roadways, both a cost of construction and a benefit from time savings could be developed. Using these two values a benefit/cost ratio was computed. Based on this ratio, roadway section 2 , section 3 , and section 4 are shown to have potential for being built. However the cost used in this evaluation does not include any planning, engineering or design costs. Nor does it include any external cost such as environmental impacts to the Rio Grande or its drainage basin.

Several alternative improvements to existing roads have the potential to directly reduce congestion at several key intersections. These improvements include the existing plans to grade separate the intersection of Mines Road and IH-35 as well as the fly-over that is being constructed from southbound IH-35 to WB Loop 20. Other possible alternatives to consider may include improvements to existing corridors or grade separations.

Based on the data collection, documentation and evaluation of existing conditions, travel forecasts, a time of day traffic operational analysis, and a segment by segment cost benefit analysis, Alliance Transportation Group, Inc. submits the following conclusions.

1. River Road is most beneficial around the City Center, as the roadways on the outskirts of town have excess capacity.
2. Of the five sections analyzed, Section 4 that runs from the existing River Road to Southgate Boulevard provides the most benefits, but also has significant physical constraints.
3. Sections 2 and 3 also provide benefit, but not enough to offset the associated cost of construction.
4. Sections 1 and 5 are essentially not viable due to the lack of traffic that would use these sections.
5. Section 0 (shown in Figure 1) was analyzed using the Laredo Model and found to have little or no traffic using it, therefore it was not analyzed in the cost-benefit analysis and is considered non-viable. Access to developable land can be achieved with cross streets connecting to the existing roadway network.
6. Overall network Vehicle Hours Traveled (VHT) for 2030 is decreased with River Road in place.
7. River Road is expected to trigger a NEPA process and require, at a minimum, an environmental assessment and likely an environmental impact study.
8. Additional work regarding physical constraints is needed to determine if the rail yard and water treatment plants present any additional complications.

Based on these results we recommend that Section 4 be analyzed further for determination of constructability to help alleviate further congestion at the intersection of Meadow Avenue and US 83, and Sections 2 and 3 should be re-evaluated when a final alignment has been determined for River Road to gage the effects that the physical constraints have on these sections.

## Appendix A. 24-hour Count Data








## Appendix B. City of Laredo Signal Timing

DATE:
INTERSECTION
NAME:


| 111 INTERVAL TIMES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHASE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| MOVEMENT |  | sb | wb | nb |  |  |  |  |
| MIN GRN |  | 15 | 12 | 15 |  |  | 10 |  |
| GAP, EXT |  | 1.5 | 2.0 | 1.5 |  |  | 2.0 |  |
| MAX 1 |  | 55 | 25 | 55 |  |  | 15 |  |
| MAX 2 |  |  |  |  |  |  |  |  |
| YELLOW | 4.0 | 4.0 | 4.0 | 4.5 | 4.0 | 4.0 | 4.0 | 4.0 |
| RED | 1.0 | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 | 1.0 | 1.0 |
| WALK |  |  |  |  |  |  |  |  |
| PED CLR |  |  |  |  |  |  |  |  |
| ADD INIT |  |  |  |  |  |  |  |  |
| TT REDUC |  |  |  |  |  |  |  |  |
| TB REDUC |  |  |  |  |  |  |  |  |
| MIN GAP |  |  |  |  |  |  |  |  |
| MX IN GR |  |  |  |  |  |  |  |  |
| WALK 2 |  |  |  |  |  |  |  |  |
| PED CLR2 |  |  |  |  |  |  |  |  |
| MAX 3 |  |  |  |  |  |  |  |  |
| MAX EXT |  |  |  |  |  |  |  |  |


| FIXED TIME | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| For Recall | 0.0 | $\mathbf{s b}$ | wb | nb |  |  |  |  |
| Min Time |  |  |  |  |  |  |  |  |


| 112 | BARRIER PHASES |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BARRIER 1 | 1 | 1 | 1 | 1 |  |  |  |  |
|  |  | BARRIER 2 |  |  |  |  | 1 | 1 | 1 | 1 |
|  |  | BARRIER 3 |  |  |  |  |  |  |  |  |
|  |  | BARRIER 4 |  |  |  |  |  |  |  |  |


| 113 | CONFLICTING PHASES | PH 1 WITH | none |
| :---: | :---: | :---: | :---: |
| SELECTIONS: | PH 2 WITH | none |  |
| PH $1 \& 2-$ NONE, 5,6 OR $5 \& 6$ | PH 3 WITH | none |  |
|  | PH $3 \& 4-$ NONE, 7,8 OR $7 \& 8$ | PH 4 WITH | none |


| DATE |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |


| 114 | RECALL | PH | TYPE | PH | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SELECTIONS: | 1 | mem-off | 5 | mem-off |  |
|  | MIN, MAX,, PED \& MIN., | 2 | mem-off | 6 | mem-off |
|  | PED \& MAX, MEM ON, MEM OFF | 3 | min | 7 | mem-off |
|  |  | 4 | max | 8 | mem-off |


| 115 | PH ROTATION | PH PAIR | $1 / 2$ | $3 / 4$ | $5 / 6$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  | RESERVICE PHASES | YES/NO | $7 / 8$ |  |  |
| REVERSE PHASES | YES/NO | NO | NO | NO | NO |
| CONDITIONAL SERVICE | YES/NO | NO | NO | NO |  |
| INHIBIT BACKUP | YES/NO | NO | NO | NO | NO |


| 116 PHASE OPTIONS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PED PROTECT |  |  |  |  |  |  |  |  |
| NON ACTUATION 1 |  |  |  |  |  |  |  |  |
| NON ACTUATION 2 |  |  |  |  |  |  |  |  |
| LAST CAR PASSAGE |  |  |  |  |  |  |  |  |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| SELECT PED TIMING 2 |  |  |  |  |  |  |  |  |
| FLASHING WALK |  |  |  |  |  |  |  |  |
| OMIT | 1 |  |  |  | 1 | 1 |  | 1 |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| SIMUL. GAP |  |  |  |  |  |  |  |  |


| 12 CONTROLLER PARAMETERS |  |  |  |
| :---: | :---: | :---: | :---: |
| RED REVERT TIME | 0 | INPUT . . ASSIGN |  |
| V/O SAMPLE | 0 | TEST A: (NONE,DIM,FLASH,RAIL) | NONE |
| \# OF SAMPLES | 0 | TEST B: (NONE,DIM,FLASH,RAIL) | NONE |
| EXCLUSIVE PED | OFF |  |  |
| V/O STOP ON FUL | OFF | TXMIT ALARMS | OFF |
| REC PAT EVTS | OFF | \% GRN SMPL TIME | 0 |
| H/W STN ID | OFF | CONSOLE TIME OUT | 99 |


| 131 INITIALIZATION OF RINGS | RING | 2 |
| :---: | :---: | :---: |
| PHASE (1-8 or ALL RED) <br> INTERVAL (GRN,YEL,RED) <br> IF YELLOW, NEXT PH ( 1-8 or NORMAL) | - 2 | 6 |
|  | GRN | GRN |
|  | NORMAL | NORMA |



INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| 141 | FLASH PARAMETERS |  |
| :---: | :---: | :---: |
| ALLOW FLASH? (YES/NO ) | yes |  |
| VOLT MO. FLASH: (ON, OFF) |  | off |


| 142 | FLASH STATES | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VEH (RED,YEL,DRK) |  |  |  |  |  |  |  |  |
| PED (ON, OFF) |  |  |  |  |  |  |  |  |
| OVERLAP (RED,YEL,DRK) |  |  |  |  |  |  |  |  |
| TOGGLE INDICATION TYPES BY USING PHASE NUMBERS |  |  |  |  |  |  |  |  |


| 143 | BEG/END FLASH | RING..........1................ 2 |  |
| :---: | :---: | :--- | :--- |
| BEGIN (NO. 1-8 or ANY PHASE) |  | ANY | ANY |
| END (NO. 1-8 or ALL RED) |  | ALL RED | ALL RED |



| 151 |
| :--- |
| OVERLAP PARAMETERS (ON/OFF) |
| INTERNAL PROGRAMMING |
| LOCK MODE |
| PH NEXT CONFLICT MODE |
| OFF |


| 152 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROGRAM OVERLAPS | PH | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| OVERLAP | 1 |  | 1 |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  | 1 |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |
|  | 8 |  |  |  |  |  |  |  |  |


| OVERLAP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| TYPE |  |  |  |  |  |  |  |  |  |


| CONFLICTING PHASES |  | PH | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 154 | OVERLAP | 1 |  |  |  |  |  |  |  |  |
|  |  | 2 |  |  |  |  |  |  |  |  |
|  |  | 3 |  |  |  |  |  |  |  |  |
|  |  | 4 |  |  |  |  |  |  |  |  |
|  |  | 5 |  |  |  |  |  |  |  |  |
|  |  | 6 |  |  |  |  |  |  |  |  |
|  |  | 7 |  |  |  |  |  |  |  |  |
|  |  | 8 |  |  |  |  |  |  |  |  |
| 155 |  |  |  |  |  |  |  |  |  |  |
| CONFLICTING OVERLAPS $\quad$ OVERLAP |  | PH | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|  |  | 1 |  |  |  |  |  |  |  |  |
|  |  | 2 |  |  |  |  |  |  |  |  |
|  |  | 3 |  |  |  |  |  |  |  |  |
|  |  | 4 |  |  |  |  |  |  |  |  |
|  |  | 5 |  |  |  |  |  |  |  |  |
|  |  | 6 |  |  |  |  |  |  |  |  |
|  |  | 7 |  |  |  |  |  |  |  |  |
|  |  | 8 |  |  |  |  |  |  |  |  |


|  |  |  |  |  |  | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUPRESSION PHASES | PH | 1 | 2 | 3 | 4 |  |  |  |  |
| OVERLAP | 1 |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |
|  | 8 |  |  |  |  |  |  |  |  |

OVERLAP CLEARANCES

| 157 OVERLAP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADD GRN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| YEL CLR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| RED CLR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |



| 159 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PED OVERLAPS | 10 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| 161 | ALARM PARAMETERS |  |
| :---: | :---: | :---: |
|  |  |  |
| TXMIT ALARMS | OFF |  |
|  | RECORD PATTRN EVTS | OFF |



| 21 | TEST CONFIGURATION | MODE |  | NUMBER |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | CMND | COOR | OFST | PLAN | CMND |
|  | CURRENT | RTC | RTC | 9 | 99 | 99 |  |  |  |  |  |  |  |
|  | NEW | RTC | RTC | 9 | 99 | 99 |  |  |  |  |  |  |  |


| 22 | PLAN | CYCLE | L- T | S | OFFSET | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 17 | 17 |  |  |  |  |  |
|  | 2 |  | 17 | 17 |  |  |  |  |  |
|  | 3 |  | 17 | 17 |  |  |  |  |  |
|  | 4 |  | 17 | 17 |  |  |  |  |  |
|  | 5 |  | 17 | 17 |  |  |  |  |  |
|  | 6 |  | 17 | 17 |  |  |  |  |  |
|  | 7 |  | 17 | 17 |  |  |  |  |  |
|  | 8 |  | 17 | 17 |  |  |  |  |  |
|  | 9 |  | 17 | 17 |  |  |  |  |  |
|  | 10 |  | 17 | 17 |  |  |  |  |  |
|  | 11 |  | 17 | 17 |  |  |  |  |  |
|  | 12 |  | 17 | 17 |  |  |  |  |  |
|  | 13 |  | 17 | 17 |  |  |  |  |  |
|  | 14 |  | 17 | 17 |  |  |  |  |  |
|  | 15 |  | 17 | 17 |  |  |  |  |  |
|  | 16 |  | 17 | 17 |  |  |  |  |  |

INTERSECTION NAME:

|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | \& |  |  |  |  |  |  |


|  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLAN \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | \& |  |  |  |  |  |  |


|  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLAN \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | \& |  |  |  |  |  |  |


|  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLAN \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | \& |  |  |  |  |  |  |


| PLAN \# |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASY SPLIT |  |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  |  | \& |  |  |  |  |  |  |


|  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLAN \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | \& |  |  |  |  |  |  |


| PLAN \# |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EASY SPLIT |  |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | $\&$ |  |  |  |  |  |  |  |


|  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLAN \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| EASY SPLIT |  |  |  |  |  |  |  |  |
| COORDINATED PHASE |  | \& |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF\| |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF\| |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |

PLEASE MAKE COPIES FOR ADDITIONAL PLANS AS REQUIRED. INTERSECTION NAME: F.M. 1472 \& Sta. Maria


|  |  |  | PHASE \# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | PLAN \# |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| PRIMARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| VEH YIELD 1 |  |  |  |  |  |  |  |  |  |  |
| SECONDARY FORCE OFF |  |  |  |  |  |  |  |  |  |  |
| PED YIELD |  |  |  |  |  |  |  |  |  |  |







PLEASE MAKE COPIES FOR ADDITIONAL PLANS AS REQUIRED.
INTERSECTION NAME: F.M. 1472 \& Sta. Maria

| 24 | SP | CY | PLAN | CMND | SP | CY | PLAN | CMND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT MAP | 1 | 1 | 1 | 0 | 3 | 1 | 1 | 0 |
|  | 1 | 2 | 1 | 0 | 3 | 2 | 1 | 0 |
|  | 1 | 3 | 1 | 0 | 3 | 3 | 1 | 0 |
|  | 1 | 4 | 1 | 0 | 3 | 4 | 1 | 0 |
|  | 2 | 1 | 1 | 0 | 4 | 1 | 1 | 0 |
|  | 2 | 2 | 1 | 0 | 4 | 2 | 1 | 0 |
|  | 2 | 3 | 1 | 0 | 4 | 3 | 1 | 0 |
|  | 2 | 4 | 1 | 0 | 4 | 4 | 1 | 0 |


| 25 | PLAN | CYC | SPL | PLAN | CYC | SPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT <br> CYC/SPL <br> MAP | 1 | 1 | 1 | 9 | 1 | 1 |
|  | 2 | 1 | 1 | 10 | 1 | 1 |
|  | 3 | 1 | 1 | 11 | 1 | 1 |
|  | 4 | 1 | 1 | 12 | 1 | 1 |
|  | 5 | 1 | 1 | 13 | 1 | 1 |
|  | 6 | 1 | 1 | 14 | 1 | 1 |
|  | 7 | 1 | 1 | 15 | 1 | 1 |
|  | 8 | 1 | 1 | 16 | 1 | 1 |


| 26 | COOR PARAMETERS |  | WALK RECYC |  |
| :---: | :---: | :---: | :---: | :---: |
|  | SYNC LNGTH | 0.0 | LV WALK BEF | TIMED |
|  | PSEU SYNC | OFF | LV WALK AFT | TIMED |
|  | COOR RUN | OFF | RECYC MODE | OFF |
|  | APPLY HOLD | OFF |  |  |
|  | COOR TYP | NORN | ROG |  |
|  | ELECT- MECH | OFF | INTERCONNECT | FREE |
|  | CLOSE LOOP | OFF | PRE OUT DWELL | OFF |
|  | STOP IN WALK | OFF | WALK = VEH PERM | OFF |
|  |  |  | INH COOR FAIL | OFF |


| 31 | PREEMPT | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALLOWED | 0 | 0 | 0 | 0 | 0 | 0 |  |
| PRE OUT DWELL ONLY | OFF |  |  |  |  |  |  |


| 32 | PREEMPT 1 PARAMETERS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DELAY |  |  | 0 | TRACK LOCK | OFF |
|  | SKIP CLR |  |  | 0 | FLASH | OFF |
| SKIP CLR | OFF | TYPE |  |  | PED OMIT | OFF |


| 33 PREEMPT | 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHASE / OVLPS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| TRACK CLRNC 1 PHASES |  |  |  |  |  |  |  |  |
| OLP'S |  |  |  |  |  |  |  |  |
| TRACK CLRNC 2 PHASES |  |  |  |  |  |  |  |  |
| OLP'S |  |  |  |  |  |  |  |  |
| PREEMPTION PHASES |  |  |  |  |  |  |  |  |
| OLP'S |  |  |  |  |  |  |  |  |
| RETURN PHASES |  |  |  |  |  |  |  |  |

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| 34 | PREEMPT | 1 | INTVL | MIN | WLK | PCL | YEL | RED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEGIN CLRNCS |  |  |  | 0 | 0 | 0 | 0.0 | 0.0 |
| TRACK 1 CLRNCS |  |  |  | 0 | 0 | 0 | 0.0 | 0.0 |
| TRACK 2 CLRNCS |  |  |  | 0 | 0 | 0 | 0.0 | 0.0 |
| RETRN CLRNCS |  |  |  | 0 | 0 | 0 | 0.0 | 0.0 |

RAIL FLSH

| 35 FLASH 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <RED/DRK/YEL> VEH |  |  |  |  |  |  |  |  |
| <ON/OFF> P PED |  |  |  |  |  |  |  |  |
| <R/D/Y> OVERLAP |  |  |  |  |  |  |  |  |


| 36 | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PREEMPT 1 | 1 | MEM ON | 5 | MEM ON |  |
|  | 2 | MEM ON | 6 | MEM ON |  |
|  | 3 | MEM ON | 7 | MEM ON |  |
|  |  | 4 | MEM ON | 8 | MEM ON |


| 41 | REAL-TIME CLOCK \& CALENDAR |  |  |  |
| :---: | :--- | :--- | :--- | :---: |
|  | DATE | DAY | TIME | SEC |
| CURRENT | \#\#-\#-\# | XXX | \#\#:\#\# | $\# \# \#$ |
| NEW |  |  |  |  |


| 42 | TIME BASE PARAMETERS |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| DYLGT- TM(MO/WK) |  |  |  | REF-TIME |
| RL-TM CLOCK; |  | SPRG |  | 60 |
| CHANGE MODE: |  | FALL |  |  |
| PULSE TIME: |  |  |  |  |
| TOD DIMMING: |  |  |  |  |


| $43-1$ | CMND | $\mathbf{0}$ | OUTPUT | 1 | OFF | 5 | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  |  |  |  |  | 2 | OFF |
|  |  | 6 | OFF |  |  |  |  |
|  |  |  | 3 | OFF | 7 | OFF |  |


| 43-2 CON | CONFLICTING | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMND | 0 |  | PHASE 2 | WITH | NONE |
|  |  |  | PHASE 3 | WITH | NONE |
|  |  |  | PHASE 4 | WITH | NONE |


| $43-3$ | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | $\mathbf{0}$ | 1 |  | 5 |  |
|  | 2 |  | 6 |  |  |
|  |  | 2 |  | 7 |  |
|  |  | 3 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |


| 43-5 | PHASE ROTATION, PAIR |  |  | 12 | 3 | 1 |  | 51 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | 0 | RESERVICE |  |  |  |  |  |  |  |  |  |
| REVERSE PHASES CONDITIONAL SERVICE |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

## SELECTIONS:

PH 1\& $2=$ NONE, $5,5,6$ OR $5 \& 6$ PH 3 \& $4=$ NONE, $5,7,8$ OR $7 \& 8$

COMMANDS:
(STANDARD)
TRAFFIC SAFETY LAREDO

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON,
MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| $43-1$ | CMND | $\mathbf{1}$ | OUTPUT | 1 | OFF | 5 | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  |  |  |  |  | 2 | OFF |
|  |  |  | 6 | OFF |  |  |  |
|  |  |  |  | OFF | 7 | OFF |  |


| 43-2 CON | CONFLICTING | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMND | 1 |  | PHASE 2 | WITH | NONE |
|  |  |  | PHASE 3 | WITH | NONE |
|  |  |  | PHASE 4 | WITH | NONE |


| $43-3$ | RECALL | PHASE | TYPE | PHASE | TYPE |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CMD | $\mathbf{1}$ | 1 |  | 5 |  |
|  | 2 |  | 6 |  |  |
|  |  | 3 |  | 7 |  |
|  |  | 3 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |



## SELECTIONS:

PH 1\& $2=$ NONE, $5,5,6$ OR 5 \& 6
PH $3 \& 4=$ NONE, $5,7,8$ OR $7 \& 8$

COMMANDS:
(STANDARD)
TRAFFIC SAFETY LAREDO

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON, MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |

$\left.\begin{array}{|c|c|c|lll|ll|lll|ll|}\hline 43-5 & \text { PHASE ROTATION, PAIR } & 1 / 2 & 3 & 1 & 4 & 5 & 1 & 6 & 7 & 1 & 8 \\ \hline \text { CMD } & \mathbf{2} & \text { RESERVICE } \\ \text { REVERSE PHASES }\end{array}\right)$

SELECTIONS:
PH 1\& $2=$ NONE, 5, 5, 6 OR 5 \& 6 PH $3 \& 4=$ NONE, $5,7,8$ OR $7 \& 8$

```
COMMANDS:
(STANDARD)
TRAFFIC SAFETY
LAREDO
```

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON, MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

| 43-1 | CMND | 3 | OUTPUT | 1 | OFF |  | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  |  |  | 2 | OFF | 6 | OFF |
|  |  |  |  | 3 | OFF | 7 | OFF |
|  |  |  |  | 4 | OFF | 8 | OFF |


| CONFLICTING |  | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMND | 3 |  | PHASE 2 | WITH | NONE |
|  |  |  | PHASE 3 | WITH | NONE |
|  |  |  | PHASE 4 | WITH | NONE |


| 43-3 | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | $\mathbf{3}$ | 1 |  | 5 |  |
|  | 2 |  | 6 |  |  |
|  |  | 3 |  | 7 |  |
|  |  | 4 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |

$\left.\begin{array}{|c|c|c|ccc|cc|cc|cc|}\hline 43-5 & \text { PHASE ROTATION, PAIR } & 1 / 2 & 3 & / & 4 & 5 & / & 6 & 7 & / 8 \\ \hline \text { CMD } & 3 & \text { RESERVICE } \\ \text { REVERSE PHASES }\end{array}\right)$

## SELECTIONS:

PH 1\& $2=$ NONE, $5,5,6$ OR $5 \& 6$
PH 3 \& 4= NONE, 5, 7, 8 OR 7 \& 8

COMMANDS:
(STANDARD)
TRAFFIC SAFETY LAREDO

$$
\begin{array}{cl}
1 & \text { OFF PEAK } \\
2 & \text { AM - PEAK } \\
3 & \text { PM - PEAK } \\
4 & \text { NOON - PEAK } \\
5 & \text { OFF - OFF PEAK } \\
6-16 & \text { OTHER }
\end{array}
$$

## SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON, MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

INTERSECTION NAME:

| $43-1$ | CMND | $\mathbf{4}$ | OUTPUT | 1 | OFF | 5 | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  | 2 | OFF | 6 | OFF |  |  |
|  |  |  | 3 | OFF | 7 | OFF |  |
|  |  |  |  | OFF | 8 | OFF |  |


| 43-2 | CONF |  | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMND |  | 4 |  | PHASE 2 | WITH | NONE |
|  |  |  |  | PHASE 3 | WITH | NONE |
|  |  |  |  | PHASE 4 | WITH | NONE |


| $43-3$ | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | 4 | 1 |  | 5 |  |
|  | 2 |  | 6 |  |  |
|  |  | 2 |  | 7 |  |
|  |  | 3 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |



SELECTIONS:
PH 1\& $2=$ NONE, 5, 5, 6 OR 5 \& 6
PH 3\&4= NONE, 5, 7, 8 OR 7 \& 8
COMMANDS:
(STANDARD)
TRAFFIC SAFETY LAREDO

$$
\begin{array}{cl}
1 & \text { OFF PEAK } \\
2 & \text { AM - PEAK } \\
3 & \text { PM - PEAK } \\
4 & \text { NOON - PEAK } \\
5 & \text { OFF - OFF PEAK } \\
6-16 & \text { OTHER }
\end{array}
$$

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON, MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| $43-1$ | CMND | $\mathbf{5}$ | OUTPUT | 1 | OFF | 5 | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  |  |  |  | 2 | OFF | 6 |
|  |  |  | 3 | OFF | 7 | OFF |  |
|  |  |  | 4 | OFF | 8 | OFF |  |


| 43-2 | CONFLICTING |  | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMND |  | 5 |  | PHASE 2 | WITH | NONE |
|  |  |  |  | PHASE 3 | WITH | NONE |
|  |  |  |  | PHASE 4 | WITH | NONE |


| 43-3 | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | $\mathbf{5}$ | 1 |  | 5 |  |
|  | 2 |  | 6 |  |  |
|  |  | 3 |  | 7 |  |
|  |  | 4 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX 2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |



SELECTIONS:
PH 1\& $2=$ NONE, $5,5,6$ OR $5 \& 6$
PH $3 \& 4=$ NONE, $5,7,8$ OR $7 \& 8$

COMMANDS:
(STANDARD)
TRAFFIC SAFETY LAREDO

1 OFF PEAK
2 AM-PEAK
3 PM-PEAK
4 NOON - PEAK
5 OFF - OFF PEAK
6-16 OTHER

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON, MEM OFF, MIN, MAX PED \& MIN, PED \& MAX

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

| $43-1$ | CMND | 6 | OUTPUT | 1 | OFF | 5 | OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR MAP |  |  |  |  | 2 | OFF | 6 |
|  |  | 3 | OFF | 7 | OFF |  |  |
|  |  |  | 4 | OFF | 8 | OFF |  |


| 43-2 CON | CONFLICTING | PHASE'S | PHASE 1 | WITH | NONE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMND | 6 |  | PHASE 2 | WITH | NONE |
|  |  |  | PHASE 3 | WITH | NONE |
|  |  |  | PHASE 4 | WITH | NONE |


| $43-3$ | RECALL | PHASE | TYPE | PHASE | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | $\mathbf{6}$ |  | 1 |  | 5 |
|  | 2 |  | 6 |  |  |
|  |  | 3 |  | 7 |  |
|  |  | 4 |  | 8 |  |


| 43-4 OPTIONS | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REST IN WALK |  |  |  |  |  |  |  |  |
| DON'T SKIP |  |  |  |  |  |  |  |  |
| SOFT RECALL |  |  |  |  |  |  |  |  |
| SELECT MAX2 |  |  |  |  |  |  |  |  |
| " PED TIMING 2 |  |  |  |  |  |  |  |  |
| INHIBIT MAX |  |  |  |  |  |  |  |  |
| DALLAS MODE |  |  |  |  |  |  |  |  |
| RED REST |  |  |  |  |  |  |  |  |
| DUAL ENTRY |  |  |  |  |  |  |  |  |
| PED OMIT |  |  |  |  |  |  |  |  |


| 43-5 | PHASE ROTATION, PAIR |  |  | 2 |  |  | 4 |  | 1 | 6 | 7 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMD | 6 | RESERVICE |  |  |  |  |  |  |  |  |  |  |
| REVERSE PHASES |  |  |  |  |  |  |  |  |  |  |  |  |
| CONDITIONAL SERVICE |  |  |  |  |  |  |  |  |  |  |  |  |

## SELECTIONS:

PH 1\& $2=$ NONE, 5, 5, 6 OR $5 \& 6$
PH 3 \& 4= NONE, 5, 7, 8 OR 7 \& 8

| COMMANDS : | 1 | OFF PEAK |
| :--- | :---: | :--- |
| (STANDARD) | 2 | AM - PEAK |
| TRAFFIC SAFETY | 3 | PM - PEAK |
| LAREDO | 4 | NOON - PEAK |
|  | 5 | OFF - OFF PEAK |
|  | $6-16$ | OTHER |

SELECTIONS:

| 0 | MEM ON |
| :--- | :--- |
| 1 | MEM OFF |
| 2 | MIN |
| 3 | MAX |
| 4 | PED \& MIN |
| 5 | PED \& MAX |
| 6 | NON ACT |
| 7 | OMIT |
| 8 | NOT USED |
| 9 | RECALL |

PH RECALL, MEM ON,
MEM OFF, MIN, MAX
PED \& MIN, PED \& MAX

INTERSECTION NAME:
F.M. 1472 \& Sta. Maria

## Appendix C. Travel Demand Model Guide

## Laredo River Road Corridor Study

## INTRODUCTION

As part of the Laredo River Road Operational Analysis Travel Model, a traditional travel modeling process was used as an aid in development of the operational analysis. An extensive effort was made to develop a complete process that would produce a River Road Operational Analysis Travel Demand Model. The procedures established for this project were developed to conform to state-of-the-practice modeling procedures used and/or developed in the State of Texas. The overall objective of these efforts are to develop 24 -Hour, AM peak, and PM peak traffic projections that can be input into traffic simulation models. The following compare an operational travel demand modeling versus planning modeling, describes the modeling processes and procedures, and explains how these processes and procedures were used for the development of the Laredo River Road Operational Analysis Travel Model.

Travel demand models are used to predict traffic volumes on proposed roadways for the development of transportation plans. The traffic forecast is based on forecasted demographics, i.e., population and employment. Since it is a computerized model simulation system, a roadway can be tested for its traffic forecast even if it does not yet exist. Based on the origins and destinations of expected population and employment concentrations, the computer simulation forecasts the traffic a roadway would be expected to carry, if it were built or improved. The traffic model can also be used to predict the impact of widening roadways (increasing their expected speed), as well as the impact of specific residential developments or shopping and employment centers.

The Laredo River Road Operational Analysis Travel Model has been developed using the state-of-thepractice software package TransCAD.

## OPERATIONAL DEMAND MODELING VS. PLANNING MODELING

The River Road operational model is a refinement of the more commonly used TxDOT Laredo planning model. The intent of refinement of the planning model is to better reflect detailed changes in traffic loadings on the transportation network and incorporate new land uses that may not have been considered in the TxDOT model. The resulting forecasted traffic demand, including turning movements, are an input to an operational simulation model, CORSIM.

CORSIM is FHWA's microscopic traffic simulation tool. CORSIM is an integration of NETSIM and FRESIM. This simulation suite can simulate networks containing both surface streets and freeways. CORSIM does not forecast travel demand. CORSIM produces a vehicular level simulation of a given network, signalization, and other parameters. CORSIM requires an input level of traffic, either from existing counts or a travel demand forecast.

It is widely held in transportation planning that route choice behavior and the precision of trip end location is highly correlated. Research indicates that a finer level of detail in the zone system leads to fewer errors in the traffic assignment process. However, the promulgation of errors seems to "bottom out" at a very fine detail of zones and network, where the effort to produce the system does not yield more accurate results.

It is clear that the planning level model for Laredo is not refined to the degree needed to reduce the number of "wrong path choices" needed for the development of traffic for input into CORSIM.


## Laredo River Road Corridor Study

There are several differences between a travel demand model created for planning purposes and a model designed for input to operational simulation. As noted above, the capacities seen in the corridor under analysis will vary significantly from the planning model. While a planning model is more regional in scope, a travel demand model developed for operational simulation is focused solely on the corridor under study.

## LAREDO RIVER ROAD OPERATIONAL ANALYSIS TRAVEL MODEL REFINEMENT

The initial phase of the modeling process was to assess the most feasible method of developing a travel demand model for the River Road Operational Analysis. The TxDOT Transportation Planning and Programming Division (TPP) has developed a modeling system for the entire Laredo metropolitan area. The 24 -Hour Laredo Travel model was used as the basis for development of a refined River Road Operational Analysis Travel Model. It is anticipated that this model will be used in conjunction with the operational simulations of various design alternatives

After careful consideration, an area of the model zone structure and network was chosen for refinement to represent the study area. The zone structure, along with population and employment for 2030 were refined in the study area, and surrounding areas of influence.

## Zonal Refinement

To refine the Laredo zonal information, digital aerial photography was obtained from the Texas Natural Resources Information System. This data were overlaid with the Laredo Planning model zones in the study area, the future year roadway network, and the proposed River Road corridor.


By
splitting zones into a finer level of detail, as shown in the above figure, the travel model produces more precise loadings of traffic onto the network. The initial zone structure divided the MPO study area into 211 zones, which includes 14 external zones.
After refinement the MPO study area had a final TSZ count of 286 zones, which included 15 external zones.

Close attention was paid to zonal definition in the River Road corridor as well as the larger zones in the
more rural areas since consistency across the entire region is desirable.
Allocation of population, households and employment for input into operational model zone structure was performed by reviewing land uses contained in the original traffic serial zone and using the available aerial photography to visually inspect the existing development patterns.

In addition to zonal refinement, the network was detail coded to balance to the refined zonal structure. Several adjacent roadways were added to the study area. The refined network, in combination with an equilibrium traffic modeling technique, results in smooth loadings of traffic in the region.

## Network Refinement

Networks were built around detailed analysis zone structures, commonly called Traffic Serial Zones. Special connector links referred to as centroid connectors represent access to the regional roadway network from zone centroids. Centroid connectors represent local roadway access between the centroid of zonal activity and the regional network. The operational characteristics of centroid connections reflect zone size, proximity of land development to the regional roadway network and local street speeds and capacities.

The physical and operational attributes of roadways, such as number of lanes, speed limit, one-way or two-way facility, and divided or undivided facility are obtained from roadway inventories. Additional traffic count data are obtained from saturation counts performed by TxDOT.

## THE THREE-STEP TRANSPORTATION MODELING PROCESS

Travel demand forecasting quantifies the existing and future interaction between the supply of, and demand for, the transportation system. The supply of transportation is represented by the characteristics of the highway and transit networks. The demand for transportation is created by the separation and intensity of urban activities. Land use forecasts provide estimates of where people will live and where businesses will locate in the future. These forecasts include the intensity of activity in an area, such as the number of households, employees, and demographic data concerning income levels and household size. These forecasts are prepared for small geographic areas called traffic serial zones (TSZ). A TSZ map was prepared for the study area. Descriptions of the service characteristics of the highway and transit networks and the land use forecasts are direct inputs to the travel demand forecasting model.

The traditional travel demand forecasting process in Laredo has three principal components: Trip generation, trip distribution, and trip assignment.

## The First Step: Trip Generation

Trip generation is the process by which the travel demand models translate the land use forecast into the number of trips in the study area's traffic serial zone for a typical day of the target year. Trip generation results in the total number of "trip ends" in the study area. A trip end is defined as the beginning or end of a trip. For example, a one-way trip from home to work has two trip ends. Trip

generation models estimate total trip ends by applying trip generation rates to the land use forecast data.

Allocation of employment was performed using the aerial photography that was available for this project. The allocation to the refined zones maintained the zones initial employment forecast of the original zone except for those zones in the warehouse district which were under forecasted as compared to the existing inventory. These zones were increased to at least the existing level. Zones directly along the River Road corridor were also analyzed for development potential and some trips were added in those areas.

The total number of trips increased from 1,641,954 in the TxDOT planning model to $1,706,557$ in the River Road Operational Model. This takes into account the under forecasted warehouse land use in the planning model.

## The Second Step: Trip Distribution

Trip distribution is the conversion of trip ends (the product of trip generation) to interacting "trips." In other words, trip ends are joined to produce completed trips. To date, the most widely used trip distribution model is the "gravity model" which essentially describes trip interchange between zones as directly proportional to the relative attraction of each of the zones and inversely proportional to some function of the spatial separation between zones, usually time or distance.

Because experience demonstrates that the exponent of travel time is not constant for all intervals of time, the basic gravity model is revised to express the effect of spatial separation on zonal trip interchange, rather than the traditional inverse exponential function of travel time. Consequently, areas with large amounts of activity tend to exchange more trips, and areas farther from each other tend to exchange fewer trips. Thus, the distribution model calculates the trip interchange volume based on the travel time to reach the potential destination and the attractiveness of that destination. Originating trips from any one zone are allocated to competing destinations based on this combination of relative trip lengths and relative attractiveness. The trips for the new external were distributed based on the existing externals. A percentage of trips were removed from the 2030 network bridge externals in a logical fashion and placed at the new external in the operational mode. More trips were taken from those externals closest to the new external and less trips were taken as the distanced increased from the new external to the original external. The distribution of these trips remained the same as the 2030 planning model.

The TXDOT software ATOM2 was used for the River Road analysis remaining consistent with the TXDOT Laredo Planning Model.

## The Third Step: Traffic Assignment

The fourth step in River Road Operational Analysis demand forecasting process, traffic assignment, is the procedure by which the travel demand models are used to estimate the volume of travel on each individual component of the transportation system. This involves "loading" the transit network with transit person trips by mode and the highway network with vehicle trips. Several techniques are available to determine which paths through the network are to be utilized by the transit and vehicle trips between zones.

## Laredo River Road Corridor Study

Following the creation of production/attraction trip tables during trip distribution, the vehicle trip tables are summed and converted to O-D format and assigned to the appropriate network (base year for base year trip table and forecast year for forecast year trip table). Several iterations of the capacity restraint model are used before the computation of the final assignment results. Between each iteration, the capacity restraint model adjusts the link impedances based on the link's volume to capacity (V/C) ratio (regardless of whether or not the link volume is over-or-under capacity). The V/C ratio is calculated using a weighted average of the assigned volumes from the preceding iterations. The assignment method ensures that each trip that is assigned cannot change its path (route) chosen without increasing the travel time of the trip.

The output from the assignment step is an estimate of the total number of vehicle trips for each segment of the highway network. The transportation planner's job does not end with trip assignment. The results of the trip assignment process, like all other steps of the travel demand forecasting process, must be evaluated. For example, the transportation planner checks individual links, smooths individual link values along a facility or within a corridor, and summarizes vehicle miles of travel (VMT) to assess the reliability of the assignment. As the desire for accuracy increases, the transportation planner must complete additional analysis and reliability checks.

## Time-of-Day Modeling

A time-of-day model was developed for the River Road network study. Two methods can be used to develop time-of-day estimates from 24 -hour travel model forecast volumes: first, a factor using regional peak-to-24 hour estimates from traffic counts can be used to develop a " $K$ " for the study area, and subsequent directional distributions can be applied to the 24 -hour loadings. Another method, which is more widely practiced, is to develop time-of-day factors for trip origins and destinations by trip purpose. This information can be obtained from diurnal distributions of travel reported in regional travel surveys. The 1997 Austin Origin-Destination Home Interview Survey was used to compile diurnal distributions of travel by trip purpose. Diurnal distributions were applied to the 24 -hour trip tables to obtain AM peak and PM peak hour trips.

## ALTERNATIVE ANALYSES

To help identify the impacts of various roadway alternatives and policies, several series of 24 hour, AM, and PM 2030 model runs were performed, including with and without River Road scenarios. This data has been input into the CORSIM traffic simulation models to complete the operational analysis of the design alternatives.

## CONCLUSION

The procedures established for this project conform to state-of-the-practice modeling procedures used and/or developed in the State of Texas. The overall efforts and procedures used to develop the Laredo River Road Operational Analysis Travel Model are sufficient to produce Time-of-Day and directional design hour traffic projections that can be input into traffic simulation models. This data has been input into the CORSIM traffic simulation models to complete the operational analysis of the final design alternative.

## Appendix D. Level of Service Analysis Sheets






|  | $y$ |  | 4 |  | $\downarrow$ | $\downarrow$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |  |
| Lane Configurations | M |  | ${ }_{7}$ | 个4 | 中t |  |  |
| Sign Control | Stop |  |  | Free | Free |  |  |
| Grade | 0\% |  |  | 0\% | 0\% |  |  |
| Volume (veh/h) | 95 | 715 | 1233 | 2200 | 1034 | 122 |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Hourly flow rate (vph) | 103 | 777 | 1340 | 2391 | 1124 | 133 |  |
| Pedestrians |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |
| Median type | None |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |
| vC , conflicting volume | 5066 | 628 | 1257 |  |  |  |  |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |
| vCu, unblocked vol | 5066 | 628 | 1257 |  |  |  |  |
| tC , single (s) | 6.8 | 6.9 | 4.1 |  |  |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 3.3 | 2.2 |  |  |  |  |
| p0 queue free \% | 0 | 0 | 0 |  |  |  |  |
| cM capacity (veh/h) | 0 | 426 | 549 |  |  |  |  |
| Direction, Lane \# | EB 1 | NB 1 | NB 2 | NB 3 | SB 1 | SB 2 |  |
| Volume Total | 880 | 1340 | 1196 | 1196 | 749 | 507 |  |
| Volume Left | 103 | 1340 | 0 | 0 | 0 | 0 |  |
| Volume Right | 777 | 0 | 0 | 0 | 0 | 133 |  |
| cSH | 0 | 549 | 1700 | 1700 | 1700 | 1700 |  |
| Volume to Capacity | Err | 2.44 | 0.70 | 0.70 | 0.44 | 0.30 |  |
| Queue Length 95th (ft) | Err | 2593 | 0 | 0 | 0 | 0 |  |
| Control Delay (s) | Err | 670.3 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| Lane LOS | F | F |  |  |  |  |  |
| Approach Delay (s) | Err | 240.8 |  |  | 0.0 |  |  |
| Approach LOS | F |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |
| Average Delay |  |  | Err |  |  |  |  |
| Intersection Capacity Utilization |  |  | 160.2\% | ICU Level of Service |  |  | H |
| Analysis Period (min) |  |  | 15 |  |  |  |  |









## Appendix E. Detailed Alignments and Costs







FOR CONSTRUCTION.


LAREDO RIVER ROAD ALIGNMENT - SECTION 5

## Laredo River Road Feasibility Study Preliminary Opinion of Probable Cost

Revised 3/9/2006

| Item | Units | Quantity | Unit Cost | Total Cost (\$) |
| :---: | :---: | :---: | :---: | :---: |
| Sections 1-5 Mines Road to 2 miles soufh of Mangana Hain Road (22.8 miles) |  |  |  |  |
| Excavation | CY | 328,825 | \$15.00 | \$4,932,375 |
| Embankment | CY | 426,379 | \$10.00 | \$4,263,790 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 114,900 | \$140 | \$16,086,000 |
| Bridge Section (44 ft width) | SF | 800,800 | \$70 | \$60,984,000 |
| Subtotal |  |  |  | \$86,266,165 |
| Contingency | LS | 25.00\% |  | \$21,566,541 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$12,077,263 |
| Civil Design | LS | 10.00\% |  | \$8,626,617 |
| Sections 1-5 Subtotal |  |  |  | \$128,536,586 |
| Sections 1-5 Cost per Mile = |  |  |  | \$5,637,570 |

Note: This information is intended to be used for planning level purposes only and is not intended for construction. It does not include other probable costs, such as: right-of-way, permits, fees,
landscaping, sidewalks, pavement markings, signs, signalization, lighting, traffic control, among other items which may be required. Due to extended portions of this alignment being within the flood plain, it is anticipated that wetland/environmental issues will be a significant part of the overall design and/or approval process and are not reflected in the above costs.

# Laredo River Road Feasibility Study <br> Preliminary Opinion of Probable Cost 

Revised 3/9/2006

| Item | Units | Quantity | Unit Cost | Total Cost (\$) |
| :---: | :---: | :---: | :---: | :---: |
| Section 1 - Mines Road to Bob Bullock Loop (5.27 miles) |  |  |  |  |
| Excavation | CY | 154,678 | \$15.00 | \$2,320,170 |
| Embankment | CY | 100,376 | \$10.00 | \$1,003,760 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 27,800 | \$140 | \$3,892,000 |
| Bridge Section (44 ft width) | SF | 184,800 | \$70 | \$12,936,000 |
|  | Subt |  |  | \$20,151,930 |
| Contingency | LS | 25.00\% |  | \$5,037,983 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$2,821,270 |
| Civil Design | LS | 10.00\% |  | \$2,015,193 |
| Section 1 Subtotal |  |  |  | \$30,026,376 |
| Section 1 Est. Cost per Mile = |  |  |  | \$5,702,851 |
| Section 2 - Bob Bullock Loop to Anna Avenue (4.43 miles) |  |  |  |  |
| Excavation | CY | 32,608 | \$15.00 | \$489,120 |
| Embankment | CY | 96,263 | \$10.00 | \$962,630 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 23,400 | \$140 | \$3,276,000 |
| Bridge Section (44 ft width) | SF | 114,400 | \$70 | \$8,008,000 |
|  | Subt |  |  | \$12,735,750 |
| Contingency | LS | 25.00\% |  | \$3,183,938 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$1,783,005 |
| Civil Design | LS | 10.00\% |  | \$1,273,575 |
| Section 2 Subtotal |  |  |  | \$18,976,268 |
| Section 2 Est. Cost per Mile = |  |  |  | \$4,281,824 |
| Section 3 - Anna Avenue to existing River Road (3.58 miles) |  |  |  |  |
| Excavation (CY) | CY | 32,310 | \$15.00 | \$484,650 |
| Embankment (CY) | CY | 77,387 | \$10.00 | \$773,870 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 18,900 | \$140 | \$2,646,000 |
| Bridge Section (44 ft width) | SF | 61,600 | \$70 | \$4,312,000 |
|  | Subt |  |  | \$8,216,520 |
| Contingency |  | 25.00\% |  | \$2,054,130 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$1,150,313 |
| Civil Design | LS | 10.00\% |  | \$821,652 |
| Section 3 Subtotal |  |  |  | \$12,242,615 |
| Section 3 Est. Cost per Mile $=$ |  |  |  | \$3,420,159 |
| Section 4 - River Road to vicinity of Meadow and US 83 ( 4.10 miles) |  |  |  |  |
| Excavation (CY) | CY | 69,184 | \$15.00 | \$1,037,760 |
| Embankment (CY) | CY | 65,800 | \$10.00 | \$658,000 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 16,000 | \$140 | \$2,240,000 |
| Bridge Section (44 ft width) | SF | 198,000 | \$70 | \$13,860,000 |
|  | Subt |  |  | \$17,795,760 |
| Contingency | LS | 25.00\% |  | \$4,448,940 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$2,491,406 |
| Civil Design | LS | 10.00\% |  | \$1,779,576 |
| Section 4 Subtotal |  |  |  | \$26,515,682 |
| Section 4 Est. Cost per Mile = |  |  |  | \$6,451,742 |
| Section 5 - Vicinity of Meadow and US 83 to 2 miles south of Mangana Hein Road (5.45 miles) |  |  |  |  |
| Excavation (CY) | CY | 40,045 | \$15.00 | \$600,675 |
| Embankment (CY) | CY | 86,553 | \$10.00 | \$865,530 |
| Paving (3-lane, $36 \mathrm{ft} \mathrm{section)}$ | LF | 28,800 | \$140 | \$4,032,000 |
| Bridge Section (44 ft width) | SF | 242,000 | \$70 | \$21,868,000 |
|  | Sub |  |  | \$27,366,205 |
| Contingency | LS | 25.00\% |  | \$6,841,551 |
| Mobilization, Bonding, Ins. | LS | 14.00\% |  | \$3,831,269 |
| Civil Design | LS | 10.00\% |  | \$2,736,621 |
| Section 5 Subtotal |  |  |  | \$40,775,645 |
| Section 5 Est. Cost per Mile = |  |  |  | \$7,475,535 |
| Total Est. Cost Sections 1-5 |  |  |  | \$128,536,586 |

Note: This information is intended to be used for planning level purposes only and is not intended for construction. It does not include other probable costs, such as: right-of-way, permits, fees,
landscaping, sidewalks, pavement markings, signs, signalization, lighting, traffic control, among other items which may be required. Due to extended portions of this alignment being within the flood plain, it is anticipated that wetland/environmental issues will be a significant part of the overall design and/or approval process and are not reflected in the above costs.


[^0]:    ${ }^{1}$ Dimension is for a continuous, two-way left-turn lane
    ${ }^{2}$ Does not account for widening on approaches to major intersections
    ${ }^{3}$ Parking on both sides of the street using the minimum pavement width will prevent continuous, two-way traffic operations

